Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2019: 4759060, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396530

RESUMO

INTRODUCTION: Pulp regeneration, as a treatment for pulp necrosis, has significant advantages over root canal therapy for the preservation of living pulp. To date, research on pulp regeneration has mainly focused on the transplantation of pulp stem cells into the root canal, but there is still a lack of research on the migration of pulp cells into the root canal via cell homing. Stem cells from the apical tooth papilla (SCAP) are recognized as multidirectional stem cells, but these cells are difficult to obtain. MicroRNAs are small noncoding RNAs that play crucial roles in regulating normal and pathologic functions. We hypothesized that some types of microRNAs might improve the migration and proliferation function of dental pulp stem cells (DPSCs), which are easily obtained in clinical practice, and as a result, DPSCs might replace SCAP and provide valuable information for regenerative endodontics. METHODS: Magnetic activated cell sorting of DPSCs and SCAP was performed. Next-generation sequencing was performed to examine DPSCs and SCAP miRNAs expression and to identify the most significant differentially expressed miRNA. CCK-8 and transwell assays were used to determine the impact of this miRNA on DPSCs proliferation and migration. RESULTS: The most significant differentially expressed miRNA between DPSCs and SCAP was miR-224-5p. Downregulating miR-224-5p promoted DPSCs proliferation and migration; the opposite results were observed when miR-224-5p was upregulated. CONCLUSION: MiR-224-5p promotes proliferation and migration in DPSCs, a finding that is of great significance for further exploring the role of dental pulp stem cells in regenerative endodontics.


Assuntos
Movimento Celular , Proliferação de Células , Polpa Dentária/metabolismo , Regulação para Baixo , MicroRNAs/biossíntese , Células-Tronco/metabolismo , Adolescente , Adulto , Polpa Dentária/citologia , Feminino , Humanos , Masculino , Células-Tronco/citologia
2.
Eur J Oral Sci ; 127(4): 294-303, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31216106

RESUMO

Dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAPs) are oral mesenchymal stem cells capable of self-renewal and have a potential for multilineage differentiation. Increasing evidence shows that microRNAs (miRNAs) play important roles in stem cell biology. Here, we focused on exploring miR-146a-5p and its relationship to the undifferentiated status of STRO-1+ SCAPs and STRO-1+ DPSCs, as well as its role during STRO-1+ DPSC differentiation and proliferation. Our data indicated that baseline miR-146a-5p expression is significantly lower in STRO-1+ SCAPs than in STRO-1+ DPSCs and increased in the latter during osteogenic induction. Moreover, we identified miR-146a-5p as a key miRNA that promotes osteo/odontogenic differentiation of STRO-1+ DPSCs and attenuates cell proliferation. Additionally, it was observed that STRO-1+ DPSC mineralization results in the downregulation of notch receptor 1 (NOTCH1) and hes family bHLH transcription factor 1 (HES1). Interference with neurogenic locus notch homolog protein 1 (Notch 1) signaling was verified to enhance differentiation and suppress STRO-1+ DPSC proliferation. It was further observed that miR-146a-5p directly targets the 3'-untranslated region (3'-UTR) of NOTCH1 and inhibits expression of both NOTCH1 and HES1mRNAs and Notch 1 and transcription factor HES-1 (HES-1) proteins in STRO-1+ DPSCs. We conclude that miR-146a-5p exerts its regulatory effect on STRO-1+ DPSC differentiation and proliferation partially by suppressing Notch signaling.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , MicroRNAs/genética , Receptor Notch1/genética , Células-Tronco/citologia , Proliferação de Células , Células Cultivadas , Humanos
3.
PeerJ ; 6: e5307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30128179

RESUMO

Oral squamous cell carcinoma (OSCC) is a major malignant cancer of the head and neck. Long non-coding RNAs (lncRNAs) have emerged as critical regulators during the development and progression of cancers. This study aimed to identify a lncRNA-related signature with prognostic value for evaluating survival outcomes and to explore the underlying molecular mechanisms of OSCC. Associations between overall survival (OS), disease-free survival (DFS) and candidate lncRNAs were evaluated by Kaplan-Meier survival analysis and univariate and multivariate Cox proportional hazards regression analyses. The robustness of the prognostic significance was shown via the Gene Expression Omnibus (GEO) database. A total of 2,493 lncRNAs were differentially expressed between OSCC and control samples (fold change >2, p < 0.05). We used Kaplan-Meier survival analysis to identify 21 lncRNAs for which the expression levels were associated with OS and DFS of OSCC patients (p < 0.05) and found that down-expression of lncRNA AC012456.4 especially contributed to poor DFS (p = 0.00828) and OS (p = 0.00987). Furthermore, decreased expression of AC012456.4 was identified as an independent prognostic risk factor through multivariate Cox proportional hazards regression analyses (DFS: p = 0.004, hazard ratio (HR) = 0.600, 95% confidence interval(CI) [0.423-0.851]; OS: p = 0.002, HR = 0.672, 95% CI [0.523-0.863). Gene Set Enrichment Analysis (GSEA) indicated that lncRNA AC012456.4 were significantly enriched in critical biological functions and pathways and was correlated with tumorigenesis, such as regulation of cell activation, and the JAK-STAT and MAPK signal pathway. Overall, these findings were the first to evidence that AC012456.4 may be an important novel molecular target with great clinical value as a diagnostic, therapeutic and prognostic biomarker for OSCC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...